Constructive Design and

Building Construction

TECHNISCHE UNIVERSITÄT DARMSTADT

Master Thesis – Susanne Eiselt

Renovations of European Building Stocks towards the "Fit for 55" Climate Package

Zielsetzung und Motivation **I**.

"Buildings are the single largest energy consumer in Europe, using 40% of our energy, and creating 36% of our greenhouse gas emissions. That is because most buildings in the EU are not energy efficient and are still mostly powered by fossil fuels. We need to do something about this urgently, as over 85% of today's buildings will still be standing in 2050, when Europe must be climate neutral."

Kadri Simson, EU Commissioner for Energy

In light of these figures, decarbonization requires renovation of the existing building stock. Nevertheless, the annual weighted energetic refurbishment rate remains persistently low at around 1%. Given the increased focus on building vulnerabilities due to the COVID-19 pandemic and to implement the Green Deal, the EU Commission launched the Renovation Wave for Europe in 2020 with the aim of doubling the annual renovation rate and reducing carbon emissions over the entire life cycle of a building. However, as previous measures are insufficient to achieve the climate targets and to adjust the related specific European legislation, the so-called "Fit for 55" package of proposed measures was announced in 2021.

II. "Fit for 55" Climate Package

Objective of the set of proposals is to reduce Green House Gas (GHG) emissions by 55% by 2030 compared to 1990 levels. In total, it comprises 13 directives and amendments concerning climate, energy and transport-related regulations. Concerning building stock emissions, the key measures are contained in the following:

1. Energy Performance of Buildings Directive (EPBD) Reclassification of energy efficiency classes, obligatory renovations

Sport facilitie 4: Breakdown of residential building floor area by country Bertelsen and Mathiesen 2020, p. 10

III. Building Stock Characteristics II

and renovation passports, emission-free new buildings, energy certificates, e-mobility charging stations and national renovation plans.

2. Energy Efficiency Directive (EED)

Renovation of public buildings, reduced energy use in the public sector and energy performance contracts (EPC's).

3. Emission Trading System (ETS)

European emissions trading scheme for the buildings and road transport sectors (EU-ETS 2), Social Climate Fund and Innovation Fund.

4. Renewable Energy Directive (RED II)

Energy Mix, renewable energy sources, heating and cooling and district heating.

III. Building Stock Characteristics I

The Buildings Performance Institute Europe estimates that in the EU27, plus Switzerland and Norway, 25 billion m² of floor space exists, which is roughly equivalent to the land area of Belgium with 30,528 km². Overall, the building stock is characterized by enormous heterogeneity, as result of cultural diversity and historical development. This is reflected in a range of building characteristics, from typologies and construction techniques to energy intensities, as illustrated in Figures 1 to 7.

Fig. 6: Share of residential heat consumption from individual heating or deli vered via district heat networks, gas grids or electricity grids per member state Source: EU 2021

Building Constructions Technologies Map Source: Landolfo 2020, p. 14

IV. Emission Characteristics

Worldwide, 39% of GHG emissions originate from the building sector, according to the United Nations. 11% of emissions are attributable to embodied emissions (phase A1-A5 in Figure 14), 28% to operational emissions.

1. Embodied emissions

On average, eastern European countries exhibit the greatest amount of GHG emissions per m², followed by western Europe, while in northern Europe, embodied carbon values are significantly lower (half of the average per m² emissions of eastern Europe).

operational and life cycle GHG emissions ove paradigmatic building's life cycle Source: Röck 2020, p. 9

Fig. 1: Floor space distribution across European regions Source: Economidou 2011, p. 8

Fig. 2: Age categorization of housing stock in Europe according to region Source: Economidou 2011, p. 9

Fig. 3: Age of the EU building stock and corresponding average U-value for building envelops Source: d'Angiolella 2017, p. 2

2. Operational emissions

Gas is the primarily used fuel type in households (approx. 913.000 GWh in 2020) 32%, followed by electricity (25%), renewables (20%), petroleum pro- $\int_{30\%}^{100\%}$ 600 ducts (12%), derivated heat (8%) and solid fuels (3%). The total of emissions equals roughly 964.1Mt CO₂ equivalent. Fig. 10: Per region share of energy in consumption for buildings Source: EU 2021, own representation

Fig. 9: Per region and sector average embodied carbon $kgCO_2/m^2$ Source: Aspen 2021, p. 12-13, own representation

Fig. 11: CO₂ by type of energy use in buildings Source: Roscini 2020, p. 9

Constructive Design and

Building Construction

TECHNISCHE UNIVERSITÄT DARMSTADT

Master Thesis – Susanne Eiselt

Renovations of European Building Stocks towards the "Fit for 55" Climate Package

V. Scenario Analysis

To predict possible development trajectories of the GHG emissions of the building stock until the year 2030 in light of the measures of the Fit for 55 climate package, scenario analysis is chosen as method. The adjacent figure depicts how possible futures are systematically approached are

Fig. 12: Scenario analysis phases Source: Gassmann and Kobe 2006, p. 19, own translation and adaption

are systematically approached.

V.I. Key impact factors

Key factors expected to influence the future development of building stock related CO₂ emissions are identified in two main categories: regulatory level factors (targets, indicators and obligations of the EU administrative bodies in the context of the Fit for 55 package), as well as environmental factors, referred to as external level (not directly influenced

V.II. Weighting of impact factors

At the building level, life cycle stages correspondding to the classification of the European Norm 15978 [Sustainability of construction works] are Subsequently, applied. an evaluation of the influence of the respective factors is performed. Results indicate: the operational section is influenced the most by factors of the exogenous level, while resource availability, supply chains, The influence is expressed via the following scoring system 0 = No influence obligatory renovations and renovations Source: own representation

												BU	LDI	NG L	E VE	L										
		Proc	oduct Stage A ssemi v Stag				A ssembl Use Stage									End	ofL	ife St	Be	eyon øster	d n					
		A1	A2	A3	A4	A5	B1	B 2	B3	B4	B 5			B6			В	7	C1	C2	C3	C4	D1	D2	D3	-
		ls		ng				<u>ں</u>		ıt	ant		Operational Energy Use				Operation al		u _		sing					ve Sum
		Raw Materia	Transport	Manufacturi	Transport	Assembly	Use	Maintenanc	Repair	Replacemer	Refurbishme	Appliances	Cooking	Lighting	Cooling	Space Heating	Domestic Hot Water	Water	Deconstructi Demolitior	Transport	Waste proces:	Disposal	Reuse	Recovery	Recycling	Acti
	Obligatory renovations		1		(0			2						2					2	2			1		8
	Net-Zero new buildings		1		1	1			0						2					()			1		5
	National Building Renovation Strategies	1			1	1	2				2						1				0			7		
	Renovation of public buildings	1			1	2				2						1				1			8			
	Reduced Energy Use Public Sector	0			0 0			0 2					2						0				0			4
	Energy Performance Contracts (EPCs)		1		1	1	2				2					1				0			7			
	Emission Trading	0			()	1					2							()		1			4	
	Social Climate Fund	1			1	1	2								1				0				0			5
	Energy Mix Renewable Energy	0			1	1 D	1					2							0				0			5
	Sources Heating and Cooling	0			(0	2				2						0					0		4		
	District Heating	0			(0	0					2							0				0			2
	Resource availability		2		2	2			2						1					1	1			2		10
	Supply Chains		2		2	2 2					0							2				2			10	
	Sources of primary energy	1			1	1	1					2							0			5				
	Climate (HDD/CDD)	te (HDD/CDD) 1) 1					2							()	0			4		
	Amount / kind of household appliances		0 0			0 0					2						2				0			4		
	User behaviout (consumption)		0		(0	0				2						0				0			2		
Floor space required per capita			2		1	1	0				2						0				1			6		
	Investments	2			2	2	1					1						1				1			8	
	R&D progress (e.g. insulation)		0 0			2					1						2				1			6		
	Inflation		2		2	2			2						2					()			1		9
2	ssive Sum		19		1	6			28						38					1	3			12		

1 = Weak or indirect influence 2 = Strong influence Passive Sum how significantly is an area influenced? Active Sum how significantly does one area influence other areas

Fig. 14: Evaluation of the impact factors according to the matrix method

through building-specific regulations.

public buildings exert the highest influence.

V.III. Descriptor analysis

		•								EXOGENI	E LEVEL				• •								
		Regulatory Level [influencable steering factors - Fit for 55]						Regulatory Level [influencable steering factors - Fit for 55]						External Level [non influencable environmental factors]									
		EPBD			EED		ETS		RED														
_	Obligatory renovations	Net-Zero new buildings	National Building Renovation Strategies	Renovation of public buildings	Reduced Energy Use Public Sector	Energy Performance Contracts (EPCs)	Emission Trading	Social Climate Fund	Energy Mix	Renewable Energy Sources	Heating and Cooling	District Heating	Resource availability	Supply Chains	Sources of primary energy	Climate (HDD/CDD)	Amount / kind of household appliances	User behaviout (consumption)	Floor space required per capita	Investments	R&D progress (e.g. insulation)	Inflation	
Description	Residential buildings have to achieve at least energy efficiency class F by 2030, non-residential buildings by 2027 (hence in each country 15% of the building stock is subject to renovation)	All newly erected public buildings must be constructed as Net-Zero- Energy buildings by 2027	Roadmaps for fossil fuel free heating and cooling by 2040, therefore in this study 50% reduction by 2030 is assumed	Renovation of 3% of the total floor area of public buildings annually is achieved	A reduced energy consumption in the public sector by 1.7% per year is targeted	Energy Performance Contracts (EPCs) to refurbish large non- residential buildings	43% reduction in emissions by 2030 compared to 2005- Certificates issued for fossil fuels such as heating oil (combustion- related) - 15% annually viewer certificates	Aids vulnerable households (in energy poverty) in renovating, refurbishing, or investing in the heating systems	By 2030, the share of renewable energy in the energy mix shall reach 40%. Starting from approximately 20% in 2019 / 2020, this corresponds to an annual plus of 2%.	Buildings shall obtain 49% of their energy from renewable sources in 2030	In the heating and cooling sector, the share of renewable energies shall increase by 1.1% per year.	Renewable energy share of district heating shall increase by 2.1% annualy	, Availability (kind) of goods	Availability (speed) of goods	Composition of energy mix	amount of HDD and CDD over the course of one year	Energy demand of appliances in buildings	f Energy demand of occuupants	Development of per capita available and demanded floor space	Amount of money spent on deep energetic refurbishments	Availability of insulation materials (with low embodied energy), which reduce (operational) energy demand	Amount of money spent on renewable energy supply or deep energetic refurbishments	
Positive	15% of wort performing buildings reach efficiency class A	low embodied energy of construction materials	-50% fossil fules for heating and cooling overall	3% renovation of public buildings annualy [x10=30%]	-1,7% energy use in the public sector annualy [x10=-17%]	refurbishments	-43% fossil fuel use in buildings	investments in residential dwellings: 1% deep energetic renovations annually	50% renewable energies in energy mix	49% renewable energy sources overall	+2,2% renewables in heating and cooling annually [x10=+22%]	+2,1% renewables in district heating annually [x10=+21%]	Güter sind in der Menge Verfügbar, in der sie benötigt werden	Güter werden in der Geschwindigkeit geliefert, in der sie benötigt werden	55% renewables E	wenige Extremwetterereignis se	reduced consumption	reduced consumption	decreasing floor space	increased spending on deep energetic refurbishments	utilization of new, more efficient materials	increased spending on renewable energy supply and deep energetic refurbishments	
Stable	15% of wort performing buildings reach efficiency class D	high/medium embodied energy of construction materials	-20% fossil fuels for heating and cooling overall	1% renovation of public buildings annualy	-0,55% energy use in the public sector annualy	view refurbishments	-20% fossil fuel use in buildings	investments in residential dwellings: 0,5% deep energetic renovations annually	40% renewable energies in energy mix	32% renewable energy sources overall	+1,1% renewables in heating and cooling annually	+1% renewables in district heating annually	Etwas schwierigere Ressourcenverfügbarkeit	Etwas verlängerte Lieferzeiten	45% renewables A	leicht veränderte anzahl an HDDs und CDDs	no change	no change	stagnant development	same spending on deep energetic refurbishments	utilization of existing, more efficient materials	same spending on renewable energy supply and deep energetic refurbishments	
Negative	15% of wort performing buildings reach efficiency class F	high embodied energy of construction materials	-5% fossil fuels for heating and cooling overall	no/less than 1% refurbishments	no change	no/very view refurbishments	no reduction of fossil fuel use in buildings	investments in residential dwellings: 0,2% deep energetic renovations annually (status quo: 0,12%)	25% renewable energies in energy mix	25% renewable energy sources overall	+0,5% renewables in heating and cooling annually	no change	Hemmung: Ressourcenknappheit führt dazu, dass energetische Sanierungrate verringert wird	Hemmung: Verlängerte Lieferzeiten führen dazu, dass energetische Sanierungrate verringert wird	E 35% renewables	viele Extremwettereregnis se - mehr kühlere und mehr heißere Tage	increased consumption	increased consumption	growing per capita floor space	decreased spending on deep energetic refurbishments	utilization of the same materials as today	decreased spending on renewable energy supply and deep energetic refurbishments	

Fig. 15: Possible trajectories (ranges of the developments) of the key factors Source: own representation

V.IV. Scenario generation

In the descriptor analysis, three possible de-High emission reduction Scenario 1 velopment trajectories until the year 2030 were generated, whereof future images emerge: a 2 clearly positive one, a clearly negative one as Scenario 3 Low emission well as an ambivalent one, neither extremely reduction positive, nor extremely negative. Inhibiting Enabling environmen Scenario 1, the best case, is the most effective in Fig. 16: Future projections terms of achieving the objectives: high regulatory effectiveness and an enabling environment ensure a high level of emission reduction. Under the circumstances of moderate regulatory effectiveness and an unaltered environment, scenario 2 is moderately efficient towards climate neutrality. In the worst case, scenario 3, effectiveness and efficiency of the measures of the Fit for 55 package are very limited. In conjunction with an inhibiting environment, emission reduction levels are low.

To evaluate the efficiency of the scenarios towards climate neutrality (by GHG emissions, social impacts, cost estimation), methodology of multicriteria assessment is chosen. It enables structureing of a decision-making process many alternatives with different consequences are available.

Tonic	Weight	Objective	Relative	Criteria	Relative	Measure	Relative	Mark	SCENARIO 1	SCENARIO 2	SCENARIO 3
Topic	meight	Objective	weight	enterna	weight	Wicasure	weight	IVE GET IX	Score	Score	Score
				Emissions from fuel	33%	residential	37,50%	0,1	3	2	1
				combustion and		non-residential	12,50%	0,03	4	2	1
				fugitive emissions		energy production/generation	50%	0,13	3	2	1
oted]				Emissions from		residential	37,50%	0,1	4	3	2
adaj		Stationary Energy	80%	consumption of	33%	non-residential	12,50%	0,03	4	3	2
scopes		Energy		consumed		energy production/generation	50%	0,13	3	2	1
CO2 criteria	75%			Transmission and distribution losses	330/	residential energy efficiency class/building standard	75%	0,2	3	2	1
stocol c				- building energy class- insulation	5570	non-residential energy efficiency class/	25%	0,07	3	3	2
ь Б				Emissios generated from		landfill	80%	0,08	1	1	1
[GH6		Waste	10%	waste generated in the demolition industry but treated out-boundary	100%	treated	20%	0,02	1	1	1
		L 1		Emissions from industrial		processes	50%	0,05	3	2	2
		Processes	10%	processes - construction industry	100%	use	50%	0,05	2	2	1
eighted Sum									2,88	2,08	1,24
ter ed]		Indirect	20%	Energy consumption (residential)	50% 0,01		4	3	1		
is Baromo n adapi		Impacts		Domestic production (decentralized, PV-roofs)	50%			0,01	2	1	1
Social impact Sustainability nergy Transitic	10%	Direct	200/	Cost of energy as a proportion of total cost of living (affordability)	45%			0,036	3	2	1
Social the Er		impacts	8070	Civic participation	15%			0,012	2	2	2
of				Recieved renovation grants	25%	0,02			3	1	1
				Fuel poverty / no access	15%			0,012	2	1	1
eighted Sum									0,276	0,168	0,112
apted]		Concerning constrution sector	60%	Costs in the building sector	100%	Costs in the building sector	100%	0,1	4	3	1
st estimation rgiewende ad	15%	Concerning	100/	Electricity	50%	Costs of providing electricity, process heat and network feed-in	50%	0,015	3	3	2
Cos a Ene		fuels	40%			Electricity grid	50%	0,015	3	2	1
Agor				041	500/	Heat network costs	50%	0,015	2	2	2
<u>ک</u>				Other Tuels	30%	Gas network costs	50%	0,015	1	1	3
eighted Sum									0,535	0,42	0,22
otal Weighted Sum	_								3,691	2,668	1,572
<u>ote</u> ry high impact = 4 gh impact = 3 edium impact = 2 w impact = 1			t of c								

VI. Multicriteria Assessment

Source: own representation

KGBauko, Prof. Dipl.-Ing. Stefan Schäfer, Franziska-Braun-Straße 3, 64287 Darmstadt, www.kgbauko.de